The nuclear receptor interacting factor-3 transcriptional coregulator mediates rapid apoptosis in breast cancer cells through direct and bystander-mediated events.
نویسندگان
چکیده
We previously reported that amino acids 20 to 50 of nuclear receptor interacting factor-3 mediates rapid apoptosis in breast cancer cell lines but not in cells derived from other tissues. We refer to this short region as death domain-1 (DD1). Small interfering RNA studies indicated that DD1-mediated apoptosis is caspase-2 dependent. In this study, we examined DD1-mediated apoptosis in more detail and generated stable caspase-2 knockdown breast cancer cells. These cells are resistant to DD1-mediated apoptosis. Time-lapse movies suggested that DD1-mediated apoptosis also leads to a "bystander effect." We found that within 5 h of DD1 expression, breast cancer cells release a factor(s) into the medium that leads to apoptosis of naive breast cancer cells or DD1-resistant cells (e.g., HeLa). The DD1-expressing caspase-2 knockdown cells also release a factor(s) that kills other cells, indicating that this effect is not dependent on the apoptogenic process. The bystander effect seems dependent on the production of reactive oxygen species (ROS). These and other studies indicate that DD1 expression in breast cancer cells leads to at least two death signals: one involving the rapid production of ROS and/or other soluble factors that directly or indirectly leads to a bystander effect and a second caspase-2-dependent process that leads to apoptosis in cells in which DD1 is expressed.
منابع مشابه
Identification of a novel pathway that selectively modulates apoptosis of breast cancer cells.
Expression of the nuclear receptor interacting factor 3 (NRIF3) coregulator in a wide variety of breast cancer cells selectively leads to rapid caspase-2-dependent apoptotic cell death. A novel death domain (DD1) was mapped to a 30-amino acid region of NRIF3. Because the cytotoxicity of NRIF3 and DD1 seems to be cell type-specific, these studies suggest that breast cancer cells contain a novel ...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملTranscriptional effects of metal ions on the bovine oxytocin and the thymidine kinase-ERE promoter through the estrogen receptor a in MDA-MB 231 breast cancer cell line
BACKGROUND: Some of metal ions as environmental pollutants show estrogenic activity. This xenostrogenic compounds can be caused carcinogenicity in organs. The mechanism of carcinogenicity of metal ions is not clarified. OBJECTIVES: In this study, we investigated the Transcriptional effects of variety of metal ions on the bovine oxytocin and the thymidine kinase-ERE promoter by estrogen receptor...
متن کاملDialogue between estrogen receptor and E2F signaling pathways: The transcriptional coregulator RIP140 at the crossroads
Estrogen receptors and E2F transcription factors are the key players of two nuclear signaling pathways which exert a major role in oncogenesis, particularly in the mammary gland. Different levels of dialogue between these two pathways have been deciphered and deregulation of the E2F pathway has been shown to impact the response of breast cancer cells to endocrine therapies. The present review f...
متن کاملMolecular and Cellular Pathobiology Complex Formation and Function of Estrogen Receptor a in Transcription Requires RIP140
RIP140 is a transcriptional coregulator involved in energy homeostasis, ovulation, and mammary gland development. Although conclusive evidence is lacking, reports have implicated a role for RIP140 in breast cancer. Here, we explored the mechanistic role of RIP140 in breast cancer and its involvement in estrogen receptor a (ERa) transcriptional regulation of gene expression. Using ChIP-seq analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2007